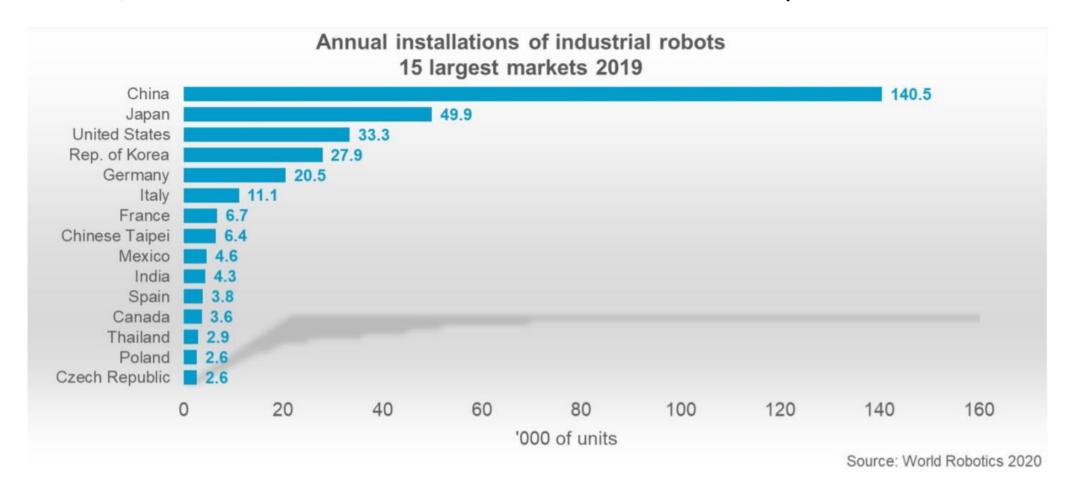

Portage County Safety Council Safety Considerations for Robots in Manufacturing May 13, 2021

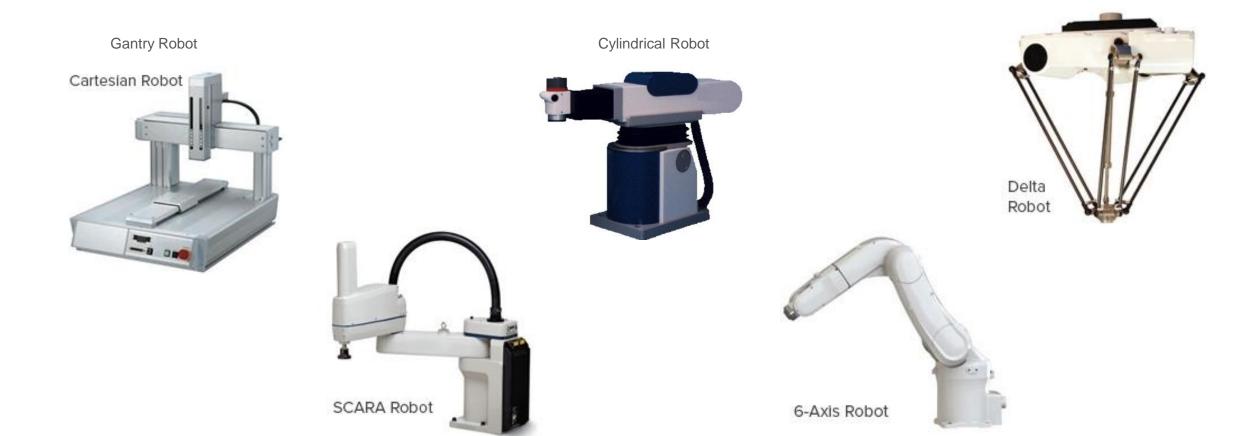
Integrated Mill Systems

Mark Eitzman

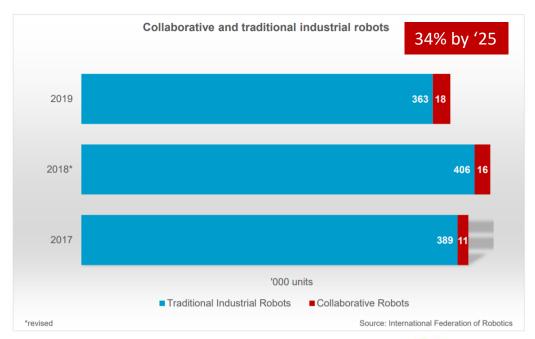
216.339.2583 meitzman@integratedmillsystems.com

Industrial robot industry trends in manufacturing

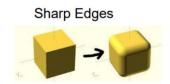

- 88% of businesses worldwide plan to adopt robotic automation into their infrastructure "in the near term" (Source: McKinsey)
 - Smarter adaptive control & Al
 - Can "see" advanced/3D/integrated vision systems
 - Easier to integrate, teach and use
 - Connected to each other, existing machines and IT
 - More cost effective...Robots as a Service (RaaS leasing)
 - Expanding into new markets
 - Demand to improve supply chain resilience (trade wars, Brexit, COVID-19, manufacture at home)
 - Energy efficiency
 - Transformation of the work environment, workers and definition of work


Industrial Robot Use

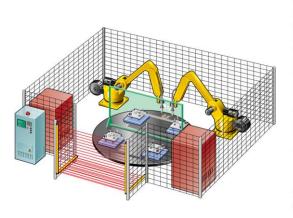
• In 2019, ~75-80% of all industrial robotics installation took place in five countries.

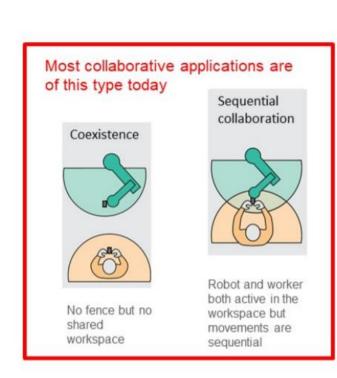


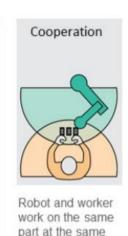
Traditional Industrial Robot Types


Cobots – still a niche, but growing

- Hand-guiding operation: Operator has direct contact & control of robot system
- **Speed & Separation Monitoring**: Robot system / hazard speed reduces as an operator gets closer. Protective stop is issued before contact.
- Power & Force Limiting: Incidental contact between robot and person will not result in harm to person.
- Reference ISO TS 15066. Requires a risk assessment per each body region.
- Applications where WORST CASE is ONLY SLIGHT INJURY!
- Sharpness of end devices/piece


Human/Robot Collaboration


Types of collaboration with industrial robots


Requirement for intrinsic safety features vs. external sensors

Cell

Fenced robot

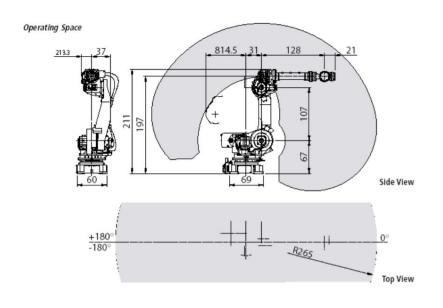
time - both in

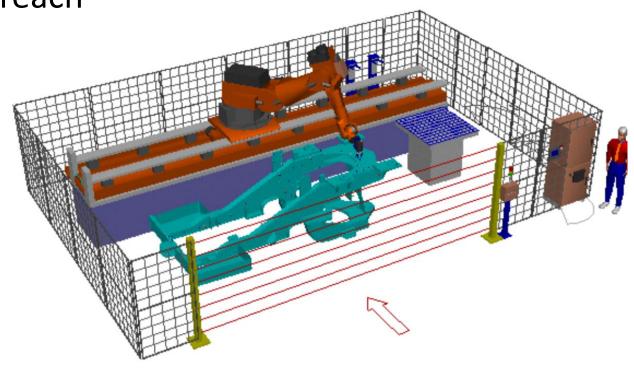
motion

Responsive collaboration

Robot responds in real-time to

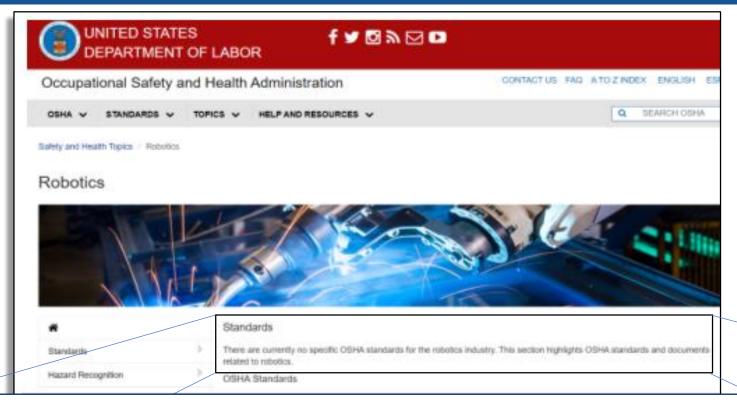
Level of collaboration


Green area: robot's workspace; yellow area: worker's workspace Source: IFR, based on: Bauer et al. (2016).



Design the workspace

How will people be interacting with the robot/machine?


- Normal and foreseeably abnormal
- Include tooling & parts in robot reach

OSHA/US/State Law on Robots...?

Standards

There are currently no specific OSHA standards for the robotics industry. This section highlights OSHA standards and documents related to robotics.

OSHA/US/State Law on Robots...? No laws, but some guidance



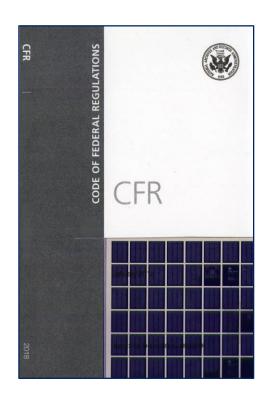
Dept. Health & Human Services

- National Institute for Occupational Safety and Health (NIOSH) created the Center for Occupational Robotics Research (CORR) in September 2017.
 - https://www.cdc.gov/niosh/topics/robotics/default.html

OSHA Technical Manual Industrial Robots and Robot System Safety

https://www.osha.gov/otm/section-4-safety-hazards/chapter-4

United States Legislative Standard Accountability for safety in the USA


OSH Act of 1970 SEC.5. Duties:

- (a) Each employer --
 - (1) shall furnish to each of his employees employment and a place of employment which are free from recognized hazards that are causing or are likely to cause death or serious physical harm to his employees;
 - (2) shall comply with occupational safety and health standards promulgated under this Act.
- (b) Each employee shall comply with occupational safety and health standards and all rules, regulations, and orders issued pursuant to this Act which are applicable to his own actions and conduct.

US Law = Requirements

- Occupational Safety and Health Administration www.osha.gov
- OSHA defines the requirements in CFR29 part 1910 ("OSHA Standards")
 - https://www.osha.gov/laws-regs/regulations/standardnumber/1910/
 - Subpart O Machinery and Machine Guarding
 - 1920.212 General requirements for all machinery
 - 1910.219 Mechanical power-transmission apparatus
 - Subpart J General Environmental Controls
 - 1910.147 Control of hazardous energy (lock-out/tag-out)

Keeping People Safe Around Machinery

Rule #1:

If access to the machine is needed, turn it off

Rule #2:

If the machine is running, keep people away

LOTO / Isolate Hazardous Energy

Machine Guarding

US Law = Requirements

Machine Maintenance

- Regulation: Lockout / Tagout or Energy Isolation
- Requirement: Release stored energy
- <u>Tasks</u>: Isolation of Mechanical / Electrical Equipment for Service and Maintenance

Production Operation

- Regulation: Machine Guarding
- Requirement: Protect operators from machine production hazards
- <u>Tasks</u>: Operator Interaction for Regular Machine Production

US Law = Requirements

Machine Maintenance

- <u>Regulation</u>: Lockout / Tagout or Energy Isolation
- Requirement: Release stored energy
- <u>Tasks</u>: Isolation of Mechanical / Electrical Equipment for Service and Maintenance

Production Operation

- Regulation: Machine Guarding
- Requirement: Protect operators from machine production hazards
- <u>Tasks</u>: Operator Interaction for Regular Machine Production

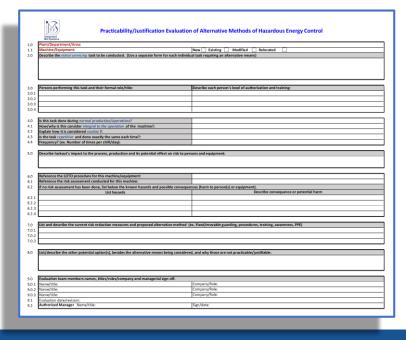
Minor Service Exception to Lockout Tagout

Must provide alternative

Measures that offer effective protection

Minor Servicing Exception

- <u>Regulation</u>: Machine Guarding or alternative protection means minor jams, minor tool changes & adjustments, exchange <u>Requirement</u>: Protect operators from machine production hazards when performing minor servicing
- <u>Tasks</u>: Minor servicing such as clearing jams, loading parts, etc.


Minor servicing must be routine, repetitive and integral to the operation of the system.

Minor Servicing Exception 1910.147 (a)(2)(ii)(B)

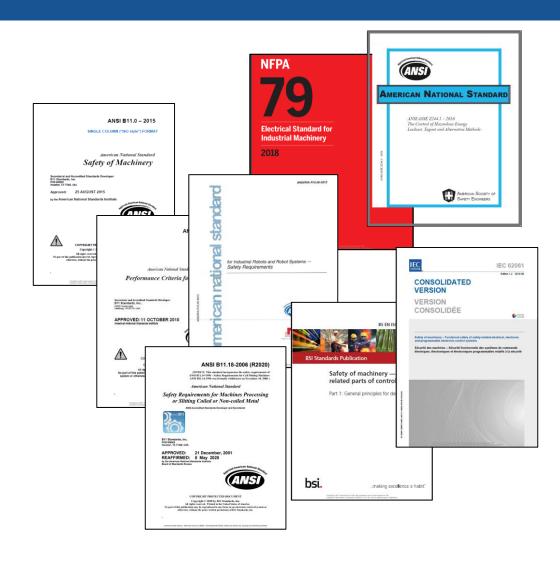
Note: Exception to paragraph (a)(2)(ii): Minor tool changes and adjustments, and other minor servicing activities, which take place during normal production operations, are not covered by this standard if they are routine, repetitive, and integral to the use of the equipment for production, provided that the work is performed using alternative measures which provide effective protection (See Subpart O of this Part).

- 1. Performed during normal operations
- 2. Is routine, repetitive and integral to the use of the equipment for production
- 3. Just as effective does not increase risk

ANSI/ASSE Z244.1 Control of Hazardous Energy - Lockout/Tagout and Alternative Methods

Q: How is regulatory compliance attained and demonstrated? A: Documented compliance to voluntary standards

- Assessment Identify and remediate hazards properly
 - ANSI B11.0, RIA TR15.306-2016 Safety Requirements Task-based Risk Assessment Methodology
- Product Designed correctly
 - ANSI/RIA R15.06-2012 American National Standard for Industrial Robots and Robot Systems —Safety Requirements (part 1)
- Application Devices and technology is applied, installed and used properly
 - ANSI B11.19-2019 Performance Requirements for Risk Reduction Measures, ANSI/RIA R15.06-2012 American National Standard for Industrial Robots and Robot Systems — Safety Requirements (part 2)
- **Performance** Safety systems designed to work even in the event of a failure
 - ISO 13849-1 2015 Safety of machinery Safety-related parts of control systems Part 1: General principles for design
- Validation Safety system properly reduced risk
 - ISO 13849-2 2012 Safety of machinery Safety-related parts of control systems Part 2: Validation



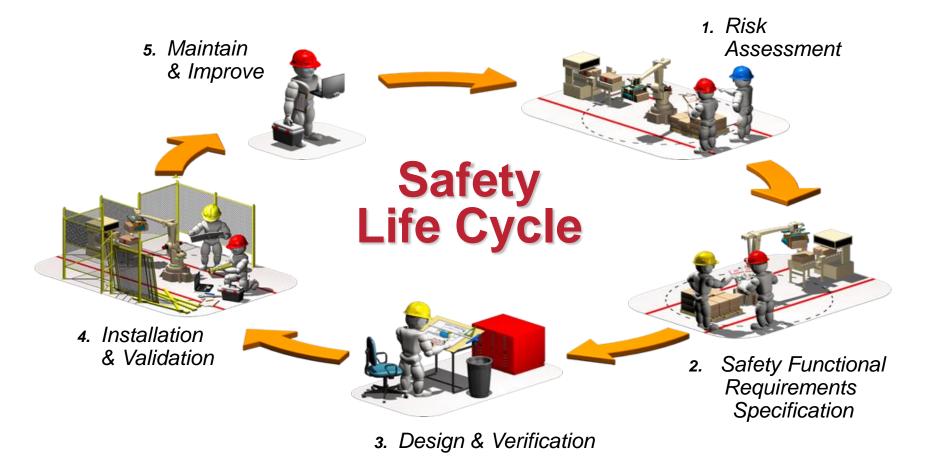
Recommended Standards for Machine Safety Design and Integrations

- ANSI B11.0-2020 Safety of Machinery
- ANSI B11.19-2019 Performance Requirements for Risk Reduction Measures
- ANSI B11.26-2018 (Machines Functional Safety For Equipment: General Principles For The Design Of Safety Control Systems Using ISO 13849-1)
- ANSI B11.20-2017 Safety Requirements for Integrated Manufacturing Systems
- NFPA79-2018 Electrical Standards for Industrial Machines
- NFPA70e-2021 Standard for Electrical Safety in the Workplace
- ANSI/ASSE Z244.1 2016 The Control of Hazardous Energy Lockout, Tagout and Alternative Methods
- ISO 13849-1-2015 Safety of machinery Safety-related parts of control systems Part 1: General principles for design
- ISO 13849-2-2012 Safety of machinery Safety-related parts of control systems Part 2: Validation
- **IEC 62061-2021** Safety of machinery Functional safety of safety-related electrical, electronic and programmable electronic control systems
- ANSI/RIA15.06-2012 Safety Requirements for Industrial Robots and Robot Systems
- RIA TR R15.306-2016 Safety Requirements Task-based Risk Assessment Methodology
- ISO 14120-2015 General Requirements for the design and Construction of Fix and Moveable Guards

Robot Safety Standards

- ANSI/RIA15.06-2012 American National Standard for Industrial Robots and Robot Systems Safety Requirements
 - The national adoption of ISO 10218-1 and ISO 10218-2 in one RIA publication
- ISO 10218-1,2 revision expected 2021
 - Part 1 Guidance for the assurance of safety in the design and construction of the robot (product)
 - Part 2 Guidelines for the safeguarding of personnel during robot integration, installation, functional testing, programming, operation, maintenance and repair (integrators & owners)
- ANSI/RIA15.06-2012 revision expected in 202?
- RIA TR R15.306-2016 revision expected in 2023
 - Safety Requirements Task-based Risk Assessment Methodology

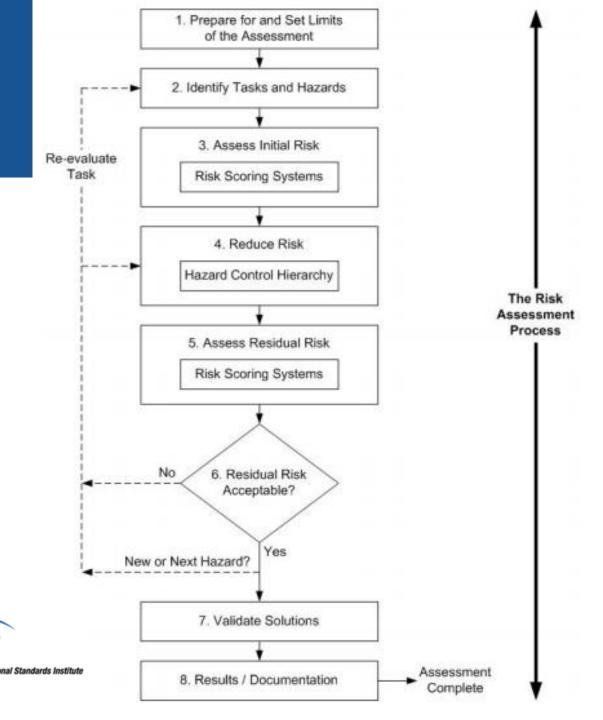
Robot Safety Standards


• TR R15.406-2014 - Safeguarding, pulls many requirements from

various ISO safety standards.

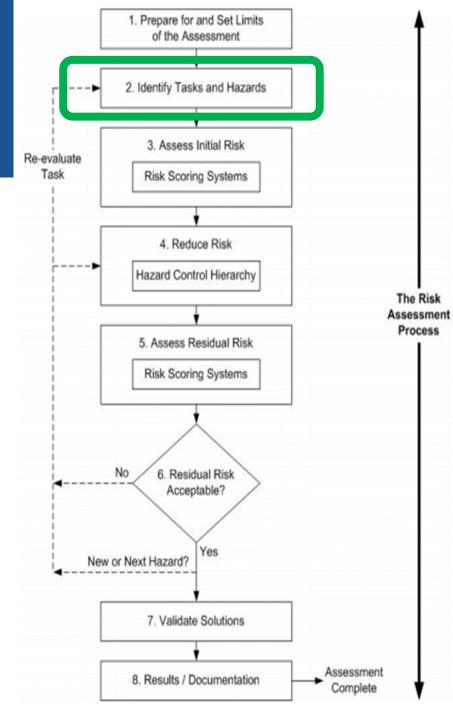
- ISO13849-1,2 SRP/CS
- ISO14120 Guarding
- ISO14119 Interlocking Guards
- ISO13850 Emergency Stops
- ISO13855 Safe Distance PSD
- ISO13857 Safe Distance Guarding
- TR R15.506-2014 Applicability of R15.06-2012 for existing robots, robot systems and applications.
 - An assumption...a big one...the application was compliant at the time of it's original commissioning

ISO, IEC, ANSI, RIA, etc. Functional Safety Life Cycle



Risk Assessment Process ANSI B11.0 2020

- 1) Prepare for and set limits of the assessment
- 2) Identify tasks and hazards
- 3) Assess initial risk
- 4) Reduce risk
- 5) Assess residual risk
- 6) Achieve acceptable risk
- 7) Validate solutions
- 8) Document the process

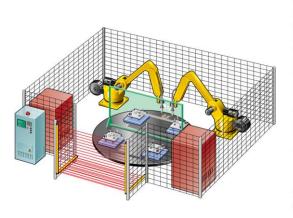


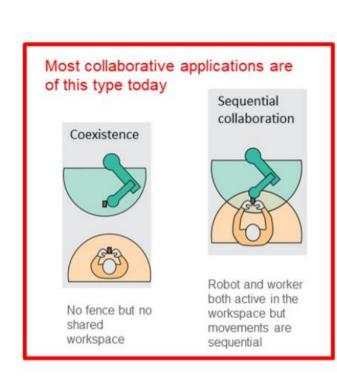
Team-Based Risk Assessment

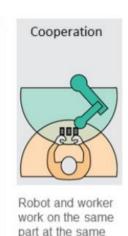
All affected people for all task, then associate hazards per task

- operators
- maintenance
- engineers
- electricians
- mechanics
- technicians
- EHS

- sales personnel
- installers
- uninstallers
- administrative
- managers
- supervisors
- temporary employees
- passers-by
- fork trucks/drivers
- material handling
- HR
- consultants


Human/Robot Collaboration


Types of collaboration with industrial robots


Requirement for intrinsic safety features vs. external sensors

Cell

Fenced robot

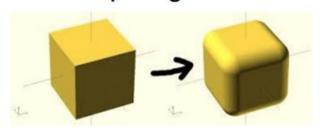
time - both in

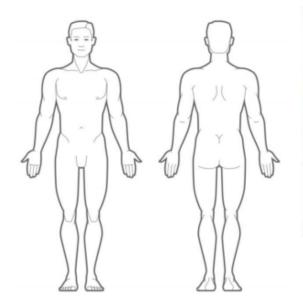
motion

Responsive collaboration

Robot responds in real-time to

Level of collaboration


Green area: robot's workspace; yellow area: worker's workspace Source: IFR, based on: Bauer et al. (2016).



Robot Safety Standards

 A Guide to Testing Pressure and Force in Collaborative Robot Applications - RIA TR R15.806 – 2018

Sharp Edges

Report		
	Collabo	orative
嘎	Robot	tions
Ŧ		1/1
ᄛ		1
S		
Ĕ		

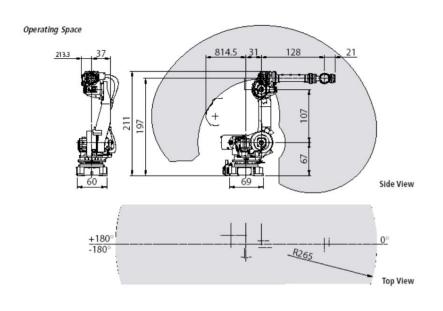
Although we are not Doctors, we need to be aware of the potential contact area(s), forces.

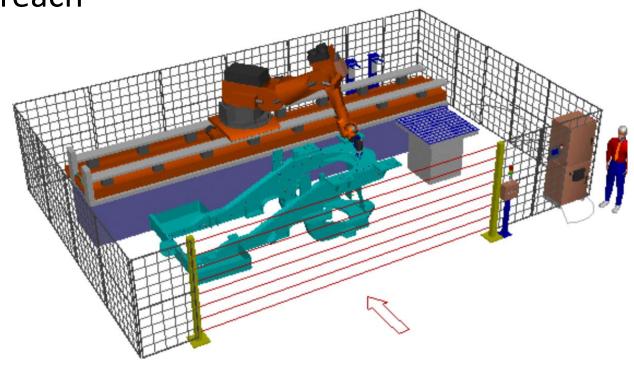
			tic Contact		t Contact
		Maximum	Maximum Allowable	Maximum	Maximum
dy		Allowable		Allowable	Allowable
ion	Specific Body Area	Pressure	Force	Pressure	Force
ЮП	Middle of forehead	[N/cm ²]	[N]	Multiplier	Multiplier
	ivildate of forenead	130		N/A	
ıd	Temple	110	130	N/A	N/A
ad					
	Masticatory muscle	110	65	N/A	N/A
	Neck muscle	140	150	2	2
	Seventh neck muscle	210	150	2	_
id	Shoulder joint	160	210	2	2
ers	Fifth lumbar vertebra	210	210	2	2
	Sternum	120	140	2	2
	Pectoral muscle	170		2	_
en	Abdominal muscle	140	110	2	2
	Pelvic bone	210	180	2	2
arms	Deltoid muscle	190		2	
ow	Humerus	220	150	2	2
arms	Radial bone	190		2	
ist	Forearm muscle	180	160	2	2
	Arm nerve	180	200	2	-
	Forefinger pad D	300		2	
	Forefinger pad ND	270		2	
	Forefinger end joint D	280		2	
and	Forefinger end joint ND	220		2	
aniu	Thenar eminence	200	140	2	2
	Palm D	260		2	
	Palm ND	260		2	
	Back of the hand D	200		2	
	Back of the hand ND	190		2	
and	Thigh muscle	250	220	2	2
	Kneecap	220	120	2	-
egs	Middle of shin	220	130	2	2
	Calf muscle	210	200	2	

Transient vs. Quasi Static Contact


- The kind of contact between the operator and the robot need to be understood and managed.
- These include quasi static (pinching) and transient "moving contact before retract"

- crushing
- shearing
- cutting or severing
- entanglement
- drawing—in or trapping
- impact
- stabbing or puncture
- friction, abrasion
- high pressure fluid/gas injection or ejection

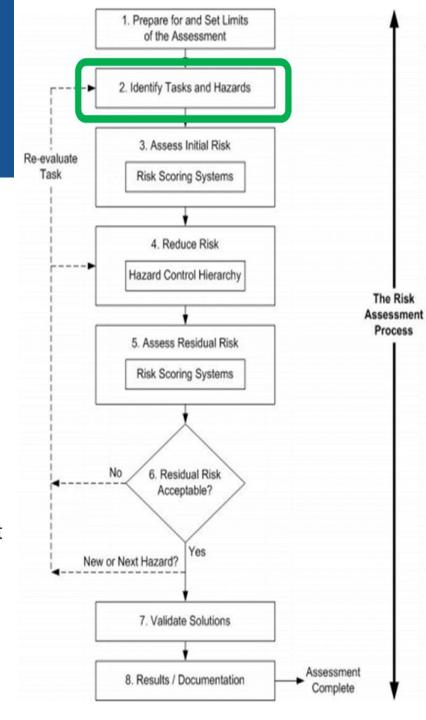




Design the workspace

How will people be interacting with the robot/machine?

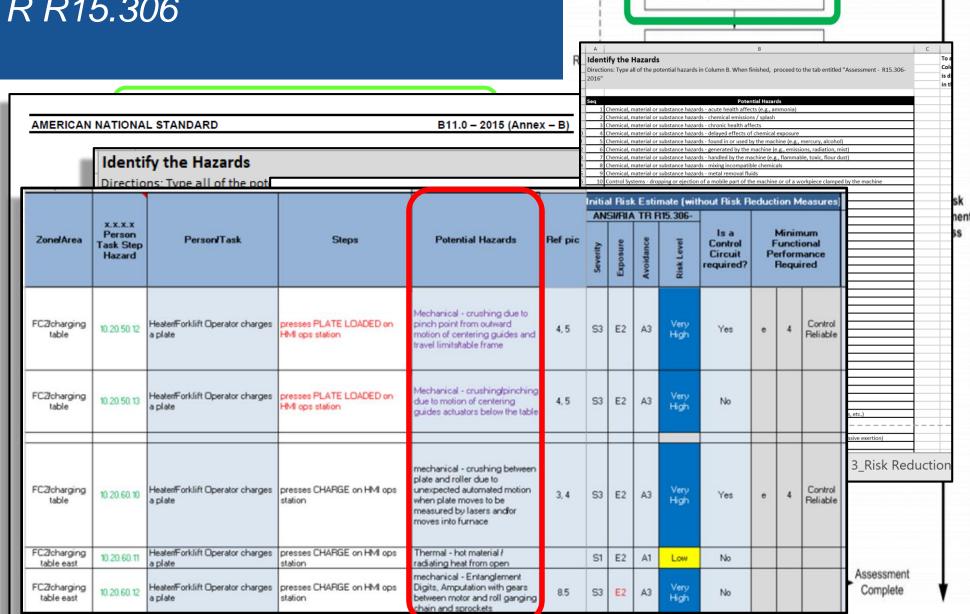
- Normal and foreseeably abnormal
- Include tooling & parts in robot reach



Identify Hazards ex. ANSI B11.0, RIA TR R15.306

- Electrical
- Thermal
- Noise
- Vibration
- Radiation
- Inhalation
- Fire
- Biological
- Viral or bacterial
- Ergonomic
- Lack/neglected PPE
- Unexpected starts
- Over/under speed
- Inadequate lighting

- Power failure
- Falling/ejected objects or fluids
- Structural stress/overload
- Inadequate location of controls/display
- Control/software failure
- Human error
- Unexpected influence on machine (ex. wind)
- Mismatch of human characteristic
- Breach of hazardous container/conduit



Identify Hazards ex. ANSI B11.0, RIA TR R15.306

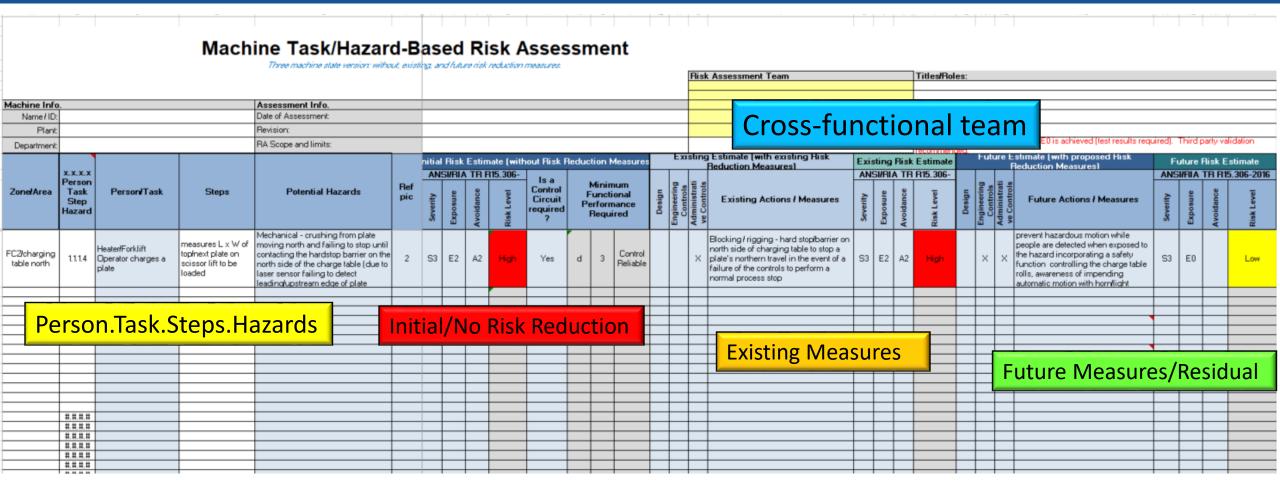
1. Prepare for and Set Limits of the Assessment Identify Tasks and Hazards Directions: Type all of the potential hazards in Column B. When finished, proceed to the tab entitled "Assessment - R15.306-

- Mechanical
- Electrical
- Thermal
- Noise
- Vibration
- Radiation
- Inhalation
- Fire
- Biological
- Viral or bacterial
- Ergonomic
- Lack/neglected PPE
- Unexpected starts
- Over/under speed
- Inadequate lighting

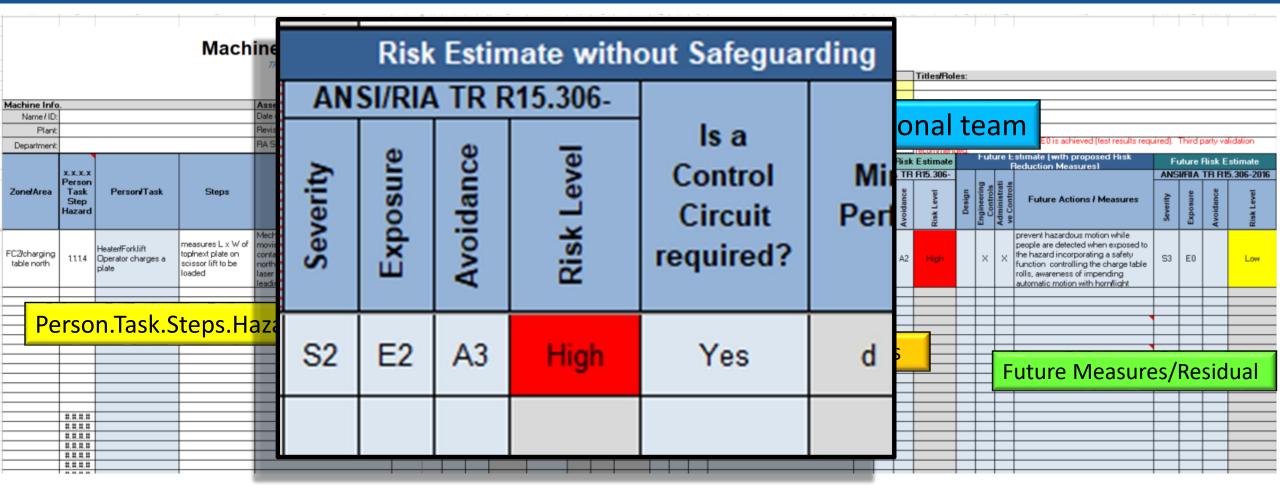
Robot modes

- All affected persons' tasks
- Operations
- Maintenance
- Programming/teaching
 - People location
 - Training
 - Authorized access control
 - T1, T2

60-80% of incidence occur outside of normal operation

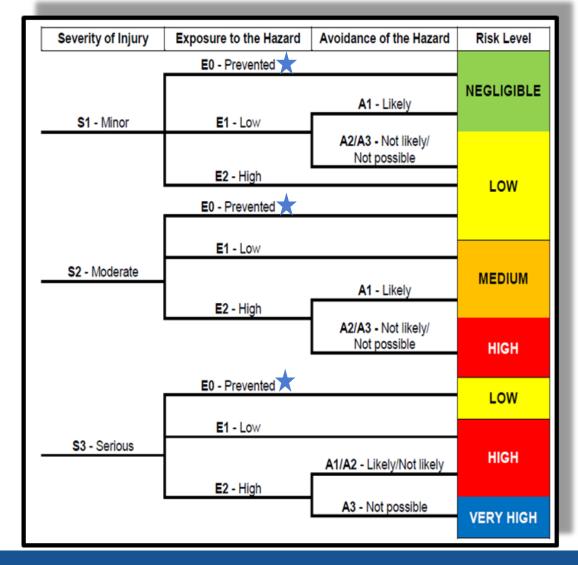


Mode	Graphical symbol
Automatic	
Manual reduced speed	5m
Manual high-speed	



Risk Estimation/Score in three states

Risk Estimation/Score in three states



RIA 15.06 Risk Scoring System

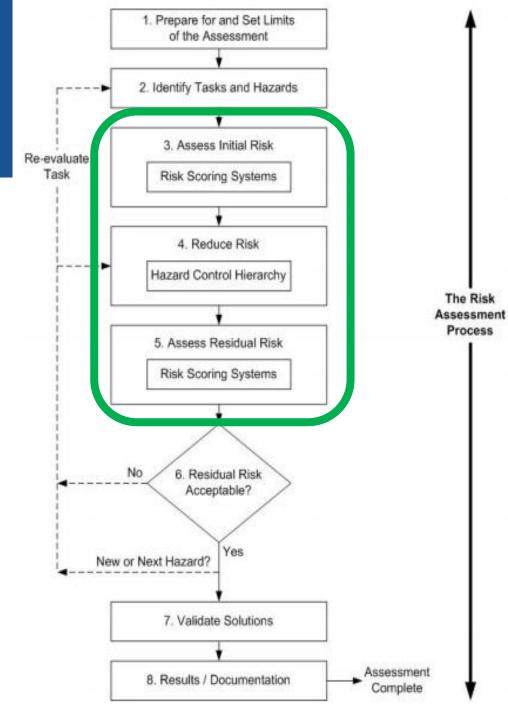
RIA TR R15.306-2016

- 5 risk ratings to be evaluated
- 3 factors of the hazard
 - Severity of Injury
 - Exposure to Hazard
 - E0 only after mitigation
 - Avoidance of Hazard

		Risk	Estin	nate with	out Safegua	rding
ı	AN	SI/RIA	TRR	15.306-		
	Severity	Exposure	Avoidance	Risk Level	Is a Control Circuit required?	Mii Perl
	S2	E2	A3	High	Yes	d

Risk Estimation & Risk Reduction Methods

- Estimation to get a rating or score
- A consistent means to determine if risk is acceptable or unacceptable
- Risk is the <u>combination</u> of the;
 - Severity of harm



- Probability of occurrence of that harm
 - frequency of exposure

avoidability

Risk rating determines the recommended risk reduction measures

ANSI Z244.1

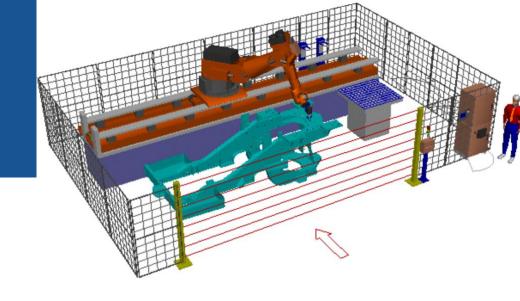
Table 3 – Hierarchy of risk reduction measures

RIA TR R15.306-2016

Table 4 - Minimum risk reduction measures as a function of the risk level

	Risk Reduction			Risk Level		
	Measure	VERY HIGH	HIGH	MEDIUM	LOW	NEGLIGIBLE
Most	Elimination					
Preferred	Substitution	Use of one or				
	Limit Interaction	risk reduction as a primary r				
	Safeguarding/ SRP/CS	ao a pa., .			Any of the	he risk n measures
Least Preferred	Protective Measures Warnings and Awareness Means Administrative Controls PPE	Use of one or risk reduction in conjunction reduction measure.	measures with the alasures but s	may be used bove risk shall not be	risks to	ble level may

		able 5 - Illerarchy	of risk reduction measures
More preferred	Safe Design	Elimination	Process design, redesign or modification including changing layout to eliminate hazards (e.g. falls, hazardous materials, noise, confined spaces, eliminating pinch points, or reduce manual handling)
	ntly Safe [Measures	Substitution	Use of less hazardous materials Intrinsically safe (energy containment) Reduce energy (e.g. lower speed, force, amperage, pressure, temperature, volume or noise)
	Inherently Mea	Limit Interaction	Eliminate or reduce human interaction in the process Automate tasks, automate material handling (e.g. lift tables, conveyors, balancers)
	Safeguarding and Complementary Protective Measures	Safeguards and Safety- Related Parts of the Control System (SRP/CS)	Guards Interlocks or interlocking devices Sensitive protective equipment Two-hand control devices Safety controls and logic Safety-related functions and safety parameters or configurations, (e.g. safety-rated speed, position, location, axis limits) Integration of protective devices, possibly including complementary protective measures
	Safegua Complementary P	Complementary Protective Measures	railing (building codes or standards can apply) Measures for escape and rescue of people Measures for safe access to machinery Provisions for easy or safe handling of machines and their heavy component parts Energy isolation or dissipation means Controlled selection of operating modes Enabling devices Emergency stop devices and functions
		Warnings and Awareness Means	Flashing lights, beacons or strobes Audible alarms, beepers, horns or sirens Signs, placards, markings or labels
	nformation for Use	Administrative Controls	Training and safe job procedures Confined space policy and procedures Control of hazardous energy procedures (lock-out) used with energy isolation or dissipation means Rotation of workers, changing work schedule Equipment safety inspections Hazard communications
Less preferred	Infor	Personal Protective Equipment (PPE)	Safety glasses, face shields, respirators, hearing protection Safety harnesses or lanyards Gloves, hard hats, clothing or footwear used for specific safety purposes (e.g. Kevlar sleeves, metatarsal protection)



If we are using a control circuit... RIA TR R15.306-2016 references 13849-1 required safety circuit Performance Level (PLr)

Table 4 – Minimum risk reduction measures as a function of the risk level

	Risk Reduction			Risk Level		
	Measure	VERY HIGH	HIGH	MEDIUM	LOW	NEGLIGIBLE
Most	Elimination					
Preferred	Substitution	Use of one or				
	Limit Interaction	risk reduction as a primary				
	Safeguarding/ SRP/CS	us a primary	means to re	duce floks.	Any of to	he risk n measures
Least Preferred	Complementary Protective Measures Warnings and Awareness Means Administrative Controls PPE	Use of one or risk reduction in conjunctior reduction me used as the p measure.	measures with the all asures but s	may be used bove risk shall not be	risks to	ble level may

RIA TR R15.306-2016

13849-1 Safety circuit Performance Level (PL)

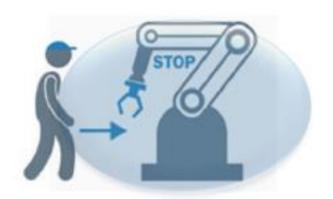
Table 5 – Minimum functional safety performance

Risk Level	PL_r	Structure Category
NEGLIGIBLE (see 6.5.3.1)	b	-
LOW	С	2
MEDIUM	d	2
HIGH	d	3
VERY HIGH (see 6.5.3.2)	е	4

Robot Safety Standard Safety Functions *Inherent* or *Integrated*

TR R15.306, table 5

Diak Laval	Minimum functional safety performance			
Risk Level	PL _r	Structure Category		
NEGLIGIBLE (see 5.6.1)	b			
LOW	С	2		
MEDIUM	d	2		
HIGH	d	3		
VERY HIGH (see 5.6.2) did not exist in R15.06-1999	e	4		


Robot safety standards require PLd, Cat 3 unless a risk assessment determines another PL and Cat is needed. Functional safety could be lower or higher, based on application – with end-effector and part(s). A higher requirement is not expected due to hazards associated with a robot system but could be required for other application risks.

PLd, Cat 3 is equivalent to Control Reliable & can be validated.

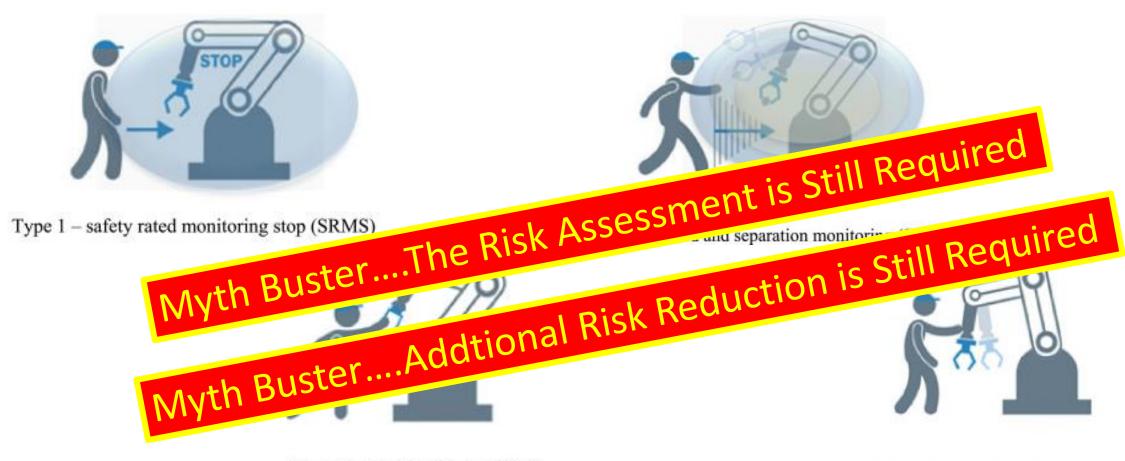
Control Reliable

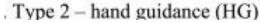
- a single fault in any of these parts does not lead to the loss of the safety function;
- whenever reasonably practicable, the single fault shall be detected at or before the next demand upon the safety function;
- when the single fault occurs, the safety function is always performed and a safe state shall be maintained until the detected fault is corrected; and
- all reasonably foreseeable faults shall be detected.
- These requirements are considered to be equivalent to structure category 3 as described in ISO 13849-1:2015

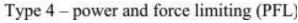
"Cage-free" Collaborative Applications Safety is inherent in the robot controller


Type 1 – safety rated monitoring stop (SRMS)

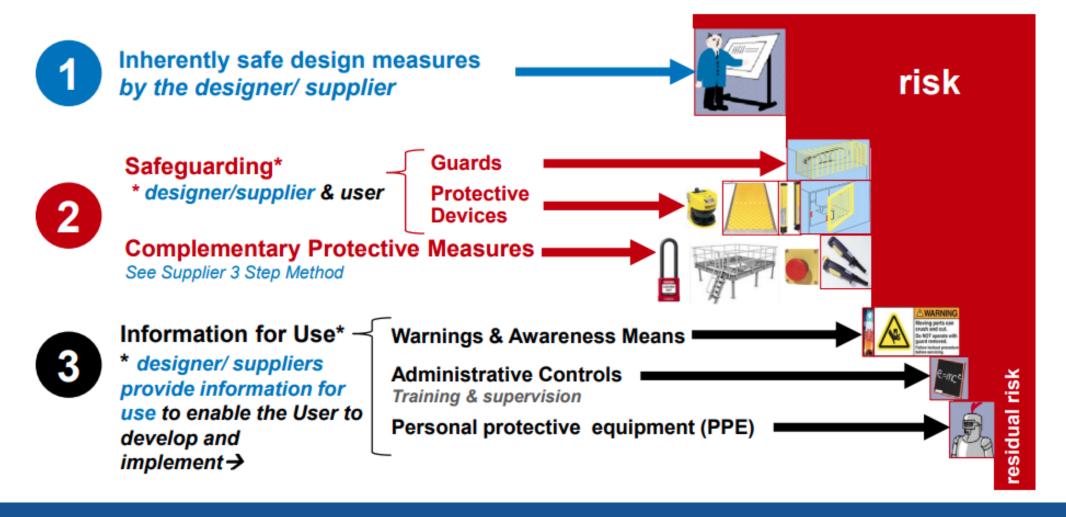
. Type 2 - hand guidance (HG)


Type 3 – speed and separation monitoring (SSM)

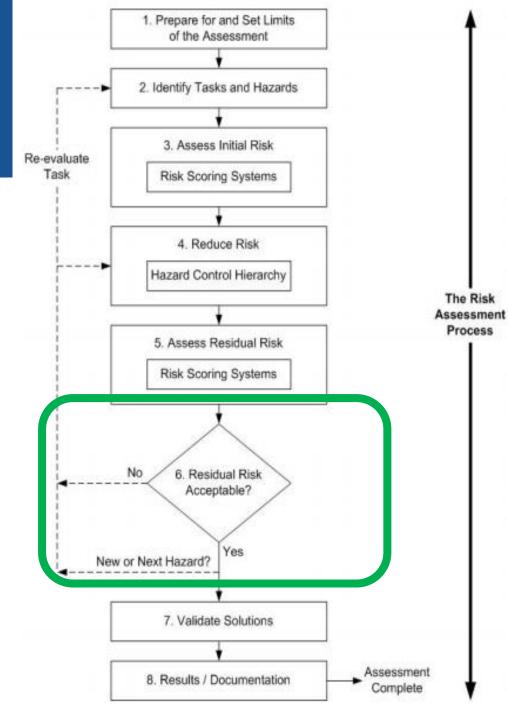



Type 4 – power and force limiting (PFL)

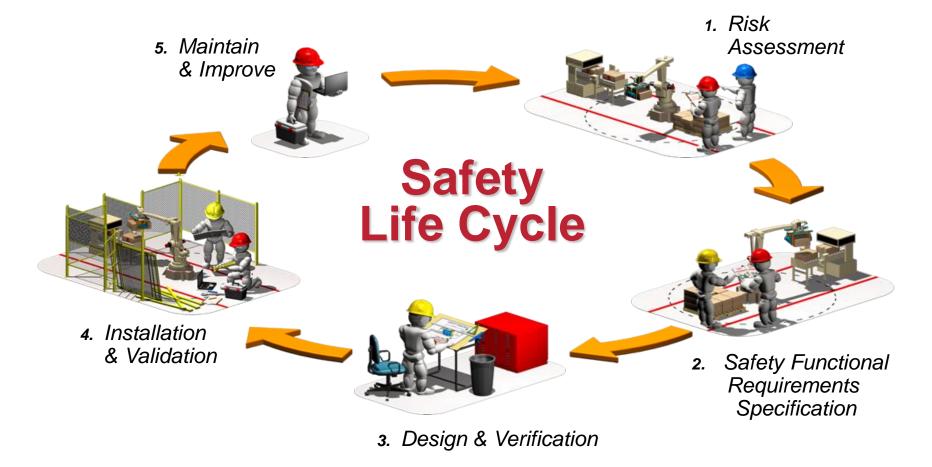
"Cage-free" Collaborative Applications Safety is inherent in the robot controller



Risk Reduction Measures – 3 Step Method



Risk Evaluation: Is the risk acceptable or unacceptable?


 User's consistent means of evaluating the rating or score

- Establishes the foundation and framework for the an effective machine safety program
- Provides a method for determining levels of protection when designing safeguards
- An active, documented process that can be maintained for the life of the machine

ISO, IEC, ANSI, RIA, etc. Functional Safety Life Cycle



Portage County Safety Council Safety Considerations for Robots in Manufacturing May 13, 2021

Integrated Mill Systems

Mark Eitzman

216.339.2583 meitzman@integratedmillsystems.com