

Bureau of Workers' Compensation

3D PRINTING & ADDITIVE MANUFACTURING SAFETY

Sarah Ghezzi, CSP 614-562-6029 Sarah.Ghezzi@bwc.ohio.gov

OBJECTIVES

- Define what is a 3D desktop printer
- Define additive manufacturing processes
- List health and safety concerns with these processes
- Categorize and identify control measures

DESKTOP 3D PRINTERS

• What is it?

Makes a 3-dimensional object from a digital file

Small enough to fit on a desk/table

• Why are they popular?

Compact

Versatile

Relatively inexpensive

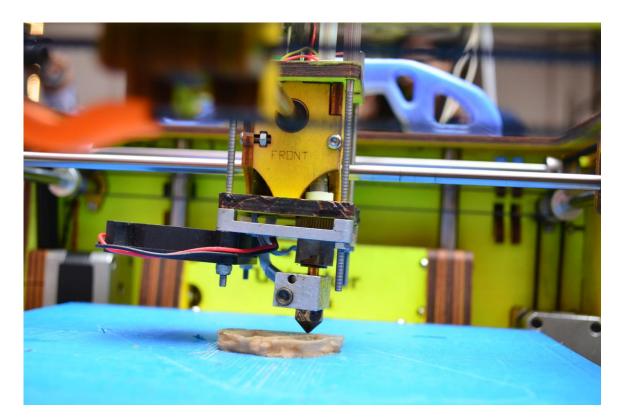
Courtesy of Institute of Museum and Library Services(IMLS.gov)

DESKTOP 3D PRINTERS

• Where do you find them?

Maker Spaces

Schools


R&D departments

• How do they work?

Additive layers of material

Multiple types of materials are available

Energy.gov

https://creativecommons.org/licenses/by-sa/3.0/

PRINTING MATERIALS

Most common: plastic filament
 PLA (Polylactic Acid)
 ABS (Acrylonitrile Butadiene Styrene)

Purchasing

Internet

Domestic and International sources

"Universal stand-alone filament spool holder (Fully 3D-printable) v08" by Creative Tools is licensed under CC BY 2.0.

ARE PRINTING MATERIALS HAZARDOUS?

Material Name: PLA 3D Printer Filament/ MakerBot PLA

Section 2 - HAZARDS IDENTIFICATION

Classification in accordance with paragraph (d) of 29 CFR 1910.1200.

None needed according to classification criteria

GHS Label Elements

Symbol(s)

None needed according to classification criteria

Signal Word

None needed according to classification criteria

Hazard Statement(s)

None needed according to classification criteria.

3DXMAX® Polycarbonate (PC)

2 HAZARDS INDENTIFICATION

Regulation (EC) NO 1272/2008: Not classified as a dangerous product

Physical Hazards: None

OSHA Regulatory Status: This product is not considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

HAZARDOUS?

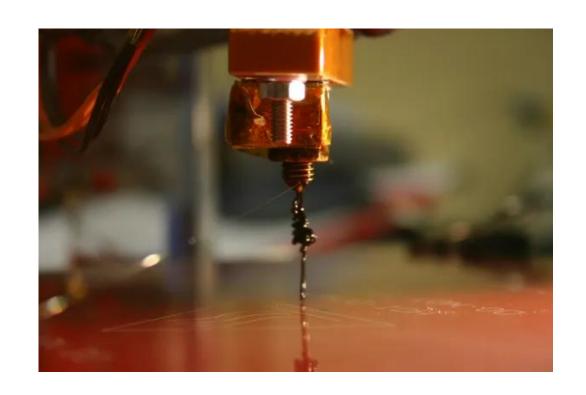
QUICK SCIENCE LESSON ...

THERMAL DECOMPOSITION

- A chemical breakdown due to heat
- Thermal degradation of polymers
 Causes chemical changes
- Off-gassing

VOCs bleed away from the plastic

float into the air and reduce indoor air quality



WHAT PARTS ARE HOT?

Printer's heated parts

Extruder Head - 374° F to over 600° F

Base Plate – 130 ° F to 158 ° F

"Threads" by dvanzuijlekom is licensed under CC BY-SA 2.0.

WHY THE HIGH HEAT?

- Not following manufacturer's instructions
 - Didn't read them
 - Don't care
- Troubleshooting crank up the heat
- Jamming filament piles up around the extruder
- Left unattended hours to days

REMEMBER THE SDS?

10 STABILITY AND REACTIVITY

Polymerization conditions to avoid: None

Chemical Stability: Stable under normal conditions

Conditions to avoid: Incompatible materials, including strong oxidizing agents

Hazardous decomposition byproducts: Thermal decomposition can yield intense heat, dense smoke, phenols, hydrogen cyanide, carbon dioxide, and carbon monoxide.

REMEMBER THE SDS?

Based on SDS reviewed:

Hydrogen Cyanide (PEL 10 ppm – IDLH 50 ppm)

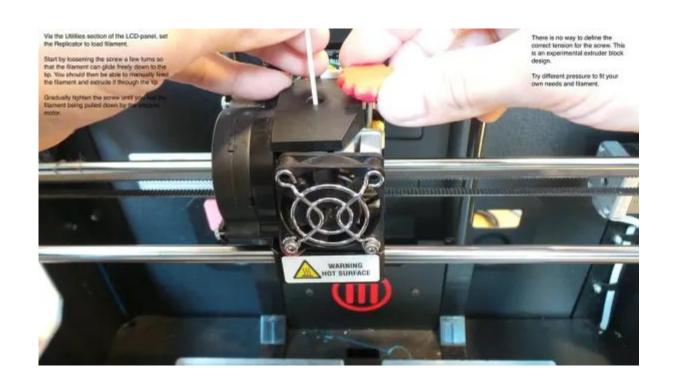
Carbon Monoxide (PEL 50 ppm)

Phenols (PEL 5 ppm Skin)

Remember our user audience?

OFF-GASSING

- VOC's Volatile Organic Compounds
- Over 60 VOC's identified by Canada/ANSI
- Common health hazards include:
 - Eye, nose, throat irritation
 - Headaches, narcotic effects
 - Target organ damage (kidney, CNS, liver)
 - Carcinogen



OTHER HAZARDS

- Cleaning chemicals
 Acetone & solvents
- Hot surfaces
- Electrical hazardsCord & plug
- Dust
 Finishing/Polishing Activities

"Adjustable Replicator Drive Block" by Creative Tools is licensed under CC BY 2.0.

HIERARCHY OF CONTROLS

SUBSTITUTION & ENGINEERING

- Printer design
- Auto shutoff during jams
- Enclosures with extractors (interlocked)
- Increased ventilation
- Low VOC emitting filaments or natural filaments (algae, hemp, cornstarch)

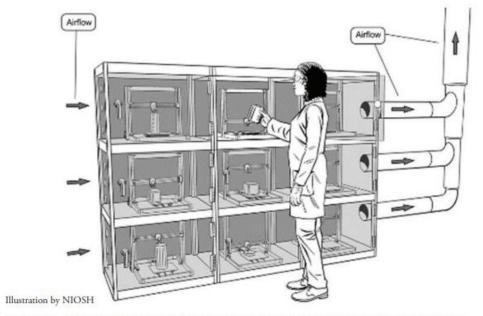
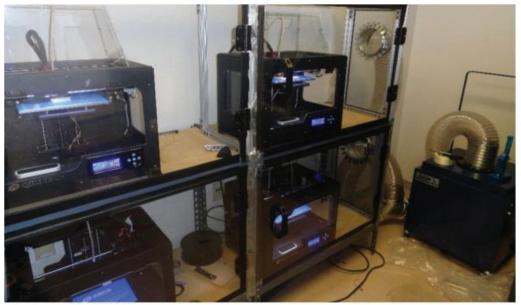



Figure 10. Drawing of a ventilated Plexiglas® enclosure surrounding a bank of 3D printers.

FUTURE REGULATION?

- ANSI/CAN/UL 2904, <u>Standard Method for Testing and Assessing Particle and</u> Chemical Emissions from 3D Printers
- UL <u>3D Printing & Additive Manufacturing Equipment Compliance Guideline</u>
- NIOSH recommendations:

NIOSH: Approaches to safe 3D printing: a guide for makerspace users, schools, libraries, and small businesses

NIOSH Science Blog: Characterizing 3D Printing Emissions and Controls in an Office Environment

NIOSH Health Hazard Evaluation report: Evaluation of 3D Printer Emissions and Personal Exposures at a Manufacturing Workplace

3D Printing with Filaments: Health & Safety Questions to Ask.

ADMINISTRATIVE

- Training
 - Manufacturer's instructions
 - Hot surfaces, chemicals, LOTO, fire extinguishers
 - Don't stand over it ventilation requirements
- Post signs awareness
- Choose your location wisely
- Monitor printer operations
 - Don't leave unattended

PPE

Not a solution for the targeted audience at makerspaces

Considerations

Acetone/solvent cleaning

Combustible rag disposal

Dust clean up - may be combustible

Respirators? (use ventilation)

ADDITIVE MANUFACTURING (AM)

Only in Ohio...

Ohio is the place of many firsts in additive manufacturing technology innovation.

1st 1st 1st

 3D printed turbine engine component

<u>Innovation in Additive Manufacturing Ecosystem</u> (jobsohio.com)

7 TYPES OF MANUFACTURING

- Material Extrusion
- Sheet Lamination
- VAT Photopolymerisation
- Material Jetting
- Binder Jetting
- Powder Bed Fusion
- Directed Energy Deposition

AM HAZARDS – FEEDSTOCK MATERIALS

- Powders (Powder Bed, Binder, Directed Energy)
 - Silica ceramics and sand may be used
 - Combustible Dust
 - Recycling and reusing
 - powder collection and transferring
 - Metal fumes

- Resins (Vat Photo)
 - VOC's and Skin
 - Tank filling and cleaning
- Adhesives (Material Extrusion, Sheet Lam, Binder Jetting)
 - VOC's and skin

AM HAZARDS - LASERS

- Sheet Lamination
- Powder Bed Fusion
- Directed Energy Deposition

 Laser Safety Requirements - LIA Z136.9-2013 Safe Use of Lasers in Manufacturing Environments

Training, PPE, maintenance

AM HAZARDS – CLEANING THE SYSTEM

- Compressed air or solvents
- Noise exposure (ototoxicants)
- Airborne dust –combustible dust
- Flammable liquids
- Dermal exposures

AM PHYSICAL HAZARDS

- Hot surfaces
- Electrical systems
- Molten materials
- Sharp edges
- Manual material handling during loading operations

AM REGULATION

- NFPA 1 Chapter 46 Fire Code
 Combustible dust and electrical concerns
- UL 3400 Outline of Investigation for Additive Manufacturing Facility Safety Management
- ASTM Proposed guide for AM: Standard guideline for the use of metallic materials

SUMMARY

- Wide use of 3D printers expose multiple audiences
- Additive manufacturing hazards are specific to the process
- Control measures are specific to the process
- Operator training is necessary

QUESTIONS?

BWC.Ohio.gov

THANK YOU

BWC.Ohio.gov

Bureau of Workers' Compensation